Search results for "Boolean satisfiability problem"

showing 10 items of 12 documents

On the decision problem for the guarded fragment with transitivity

2002

The guarded fragment with transitive guards, [GF+TG], is an extension of GF in which certain relations are required to be transitive, transitive predicate letters appear only in guards of the quantifiers and the equality symbol may appear everywhere. We prove that the decision problem for [GF+TG] is decidable. This answers the question posed in (Ganzinger et al., 1999). Moreover, we show that the problem is 2EXPTIME-complete. This result is optimal since the satisfiability problem for GF is 2EXPTIME-complete (Gradel, 1999). We also show that the satisfiability problem for two-variable [GF+TG] is NEXPTIME-hard in contrast to GF with bounded number of variables for which the satisfiability pr…

CombinatoricsDiscrete mathematicsTransitive relationComputational complexity theoryComputabilityBounded functionPredicate (mathematical logic)Decision problemBoolean satisfiability problemDecidabilityMathematics
researchProduct

Solving Graph Coloring Problems Using Learning Automata

2008

The graph coloring problem (GCP) is a widely studied combinatorial optimization problem with numerous applications, including time tabling, frequency assignment, and register allocation. The growing need for more efficient algorithms has led to the development of several GCP solvers. In this paper, we introduce the first GCP solver that is based on Learning Automata (LA). We enhance traditional Random Walk with LA-based learning capability, encoding the GCP as a Boolean satisfiability problem (SAT). Extensive experiments demonstrate that the LA significantly improve the performance of RW, thus laying the foundation for novel LA-based solutions to the GCP.

Theoretical computer scienceLearning automataEncoding (memory)Frequency assignmentCombinatorial optimizationGraph coloringSolverBoolean satisfiability problemMathematicsRegister allocation
researchProduct

Spatial reasoning withRCC8and connectedness constraints in Euclidean spaces

2014

The language RCC 8 is a widely-studied formalism for describing topological arrangements of spatial regions. The variables of this language range over the collection of non-empty, regular closed sets of n-dimensional Euclidean space, here denoted RC + ( R n ) , and its non-logical primitives allow us to specify how the interiors, exteriors and boundaries of these sets intersect. The key question is the satisfiability problem: given a finite set of atomic RCC 8 -constraints in m variables, determine whether there exists an m-tuple of elements of RC + ( R n ) satisfying them. These problems are known to coincide for all n � 1 , so that RCC 8 -satisfiability is independent of dimension. This c…

Discrete mathematicsLinguistics and LanguageClosed setEuclidean spaceSocial connectednessLanguage and LinguisticsSatisfiabilityDecidabilityCombinatoricsArtificial IntelligenceEuclidean geometryBoolean satisfiability problemFinite setMathematicsArtificial Intelligence
researchProduct

Equivalence closure in the two-variable guarded fragment

2015

We consider the satisfiability and finite satisfiability problems for the extension of the two-variable guarded fragment in which an equivalence closure operator can be applied to two distinguished binary predicates. We show that the satisfiability and finite satisfiability problems for this logic are 2-ExpTime-complete. This contrasts with an earlier result that the corresponding problems for the full two-variable logic with equivalence closures of two binary predicates are 2-NExpTime-complete.

Computational complexity theoryLogiccomputational complexityguarded fragmentsatisfiability problemBinary numberTheoretical Computer ScienceCombinatoricsArts and Humanities (miscellaneous)Computer Science::Logic in Computer ScienceClosure operatorEquivalence (formal languages)MathematicsDiscrete mathematicssatisfiability problemcomputational complexitydecidabilityequivalence closureSatisfiabilityDecidabilityTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESClosure (computer programming)Hardware and ArchitectureTheoryofComputation_LOGICSANDMEANINGSOFPROGRAMSBoolean satisfiability problemSoftwareJournal of Logic and Computation
researchProduct

The fluted fragment revisited

2019

AbstractWe study the fluted fragment, a decidable fragment of first-order logic with an unbounded number of variables, motivated by the work of W. V. Quine. We show that the satisfiability problem for this fragment has nonelementary complexity, thus refuting an earlier published claim by W. C. Purdy that it is in NExpTime. More precisely, we consider ${\cal F}{{\cal L}^m}$, the intersection of the fluted fragment and the m-variable fragment of first-order logic, for all $m \ge 1$. We show that, for $m \ge 2$, this subfragment forces $\left\lfloor {m/2} \right\rfloor$-tuply exponentially large models, and that its satisfiability problem is $\left\lfloor {m/2} \right\rfloor$-NExpTime-hard. We…

Logic0102 computer and information sciencesQuine01 natural sciences68Q17Fragment (logic)0101 mathematicstransitivityMathematicsfirst-order logicDiscrete mathematicsTransitive relationNEXPTIME010102 general mathematicsdecidabilityfluted fragmentSatisfiabilityDecidabilityFirst-order logicPhilosophysatisfiability010201 computation theory & mathematicssatisfabilityBoolean satisfiability problemcomplexityJournal of Symbolic Logic
researchProduct

Two-Variable First-Order Logic with Equivalence Closure

2012

We consider the satisfiability and finite satisfiability problems for extensions of the two-variable fragment of first-order logic in which an equivalence closure operator can be applied to a fixed number of binary predicates. We show that the satisfiability problem for two-variable, first-order logic with equivalence closure applied to two binary predicates is in 2-NExpTime, and we obtain a matching lower bound by showing that the satisfiability problem for two-variable first-order logic in the presence of two equivalence relations is 2-NExpTime-hard. The logics in question lack the finite model property; however, we show that the same complexity bounds hold for the corresponding finite sa…

Discrete mathematicsGeneral Computer ScienceLogical equivalenceFinite model propertyGeneral MathematicsDescriptive complexity theorySatisfiabilityDecidabilityFirst-order logicCombinatoricsTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESComputer Science::Logic in Computer ScienceMaximum satisfiability problemClosure operatorEquivalence relationBoolean satisfiability problemMathematics2012 27th Annual IEEE Symposium on Logic in Computer Science
researchProduct

On the Finite Satisfiability Problem for the Guarded Fragment with Transitivity

2005

We study the finite satisfiability problem for the guarded fragment with transitivity. We prove that in case of one transitive predicate the problem is decidable and its complexity is the same as the general satisfiability problem, i.e. 2Exptime-complete. We also show that finite models for sentences of GF with more transitive predicate letters used only in guards have essentially different properties than infinite ones.

CombinatoricsDiscrete mathematicsTransitive relationTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESPhraseComputational complexity theoryComputer Science::Logic in Computer SciencePredicate (mathematical logic)Decision problemBoolean satisfiability problemSentenceDecidabilityMathematics
researchProduct

On the satisfiability problem for fragments of two-variable logic with one transitive relation

2019

Abstract We study the satisfiability problem for two-variable first-order logic over structures with one transitive relation. We show that the problem is decidable in 2-NExpTime for the fragment consisting of formulas where existential quantifiers are guarded by transitive atoms. As this fragment enjoys neither the finite model property nor the tree model property, to show decidability we introduce a novel model construction technique based on the infinite Ramsey theorem. We also point out why the technique is not sufficient to obtain decidability for the full two-variable logic with one transitive relation; hence, contrary to our previous claim, [FO$^2$ with one transitive relation is deci…

Transitive relationLogic010102 general mathematics0102 computer and information sciences01 natural sciencesTheoretical Computer ScienceCombinatoricsVariable (computer science)Arts and Humanities (miscellaneous)010201 computation theory & mathematicsHardware and Architecture0101 mathematicsBoolean satisfiability problemSoftwareMathematicsJournal of Logic and Computation
researchProduct

Combining finite learning automata with GSAT for the satisfiability problem

2010

A large number of problems that occur in knowledge-representation, learning, very large scale integration technology (VLSI-design), and other areas of artificial intelligence, are essentially satisfiability problems. The satisfiability problem refers to the task of finding a satisfying assignment that makes a Boolean expression evaluate to True. The growing need for more efficient and scalable algorithms has led to the development of a large number of SAT solvers. This paper reports the first approach that combines finite learning automata with the greedy satisfiability algorithm (GSAT). In brief, we introduce a new algorithm that integrates finite learning automata and traditional GSAT use…

Theoretical computer scienceLearning automataComputer scienceRandom walkSatisfiabilitySet (abstract data type)Artificial IntelligenceControl and Systems EngineeringMaximum satisfiability problemBenchmark (computing)Combinatorial optimizationBoolean expressionElectrical and Electronic EngineeringBoolean satisfiability problemAlgorithmEngineering Applications of Artificial Intelligence
researchProduct

Topological Logics with Connectedness over Euclidean Spaces

2013

We consider the quantifier-free languages, Bc and Bc °, obtained by augmenting the signature of Boolean algebras with a unary predicate representing, respectively, the property of being connected, and the property of having a connected interior. These languages are interpreted over the regular closed sets of R n ( n ≥ 2) and, additionally, over the regular closed semilinear sets of R n . The resulting logics are examples of formalisms that have recently been proposed in the Artificial Intelligence literature under the rubric Qualitative Spatial Reasoning. We prove that the satisfiability problem for Bc is undecidable over the regular closed semilinear sets in all dimensions greater than 1,…

FOS: Computer and information sciencesComputer Science - Logic in Computer ScienceGeneral Computer ScienceUnary operationClosed setLogicSocial connectedness0102 computer and information sciencesTopological space68T30 (Primary) 03D15 68Q17 (Secondary)Topology01 natural sciencesTheoretical Computer ScienceMathematics - Geometric TopologyEuclidean geometryFOS: Mathematics0101 mathematicsMathematicsI.2.4; F.4.3; F.2.2Discrete mathematicsI.2.4010102 general mathematicsGeometric Topology (math.GT)Predicate (mathematical logic)Undecidable problemLogic in Computer Science (cs.LO)Computational Mathematics010201 computation theory & mathematicsF.4.3F.2.2Boolean satisfiability problemACM Transactions of Computational Logic
researchProduct